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Abstract: This work investigates the performance of Differential Evolution (DE) and its opposition-based version
(ODE) on large scale optimization problems. Opposition-based differential evolution (ODE) has been proposed
based on DE; it employs opposition-based population initialization and generation jumping to accelerate conver-
gence speed. ODE shows promising results in terms of convergence rate, robustness, and solution accuracy.
recently proposed seven-function benchmark test suite for the CEC-2008 special session and competition on larg
scale global optimization has been utilized for the current investigation. Results interestingly confirm that ODE
outperforms its parent algorithm (DE) on all high dimensional (500D &®@hD) benchmark functions (FF7).
Furthermore, authors recommend to utilize ODE for more complex search spaces as well. Because results cor
firm that ODE performs much better than DE when the dimensionality of the problems is increaseg®m

to 1000D. All required details about the testing platform, comparison methodology, and also achieved results are
provided.
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1 Introduction optimization method. In fact, reducing the required
number of function calls to achieve a satisfactory so-
Generally speaking, evolutionary algorithms (EAgition (which means accelerating convergence rate)
are well-established techniques to approach th@sealways valuable; especially when we are faced
practical problems which are difficult to solve for thejth expensive optimization pr0b|ems_ Emp|0y|ng
classical optimization methods. Tackling problem$mart sampling and meta-modelling are some com-

with mixed-type of variables, many local optima, unmonly used approaches [24, 25] to tackle this kind of
differentiable or non-analytical functions, which argrgblems.

frequently faced in all science and engineering fields,

are some examples to highlight the outstanding ca-Many comparison studies confirm that the differ-
pabilities of the evolutionary algorithms. Because ehtial evolution (DE) outperforms many other evo-
evolutionary nature of EA algorithms, as a disadvahtionary optimization methods. In order to en-
tage, they are computationally expensive in generalnce DE, opposition-based differential evolution
[16, 17]. Furthermore, the performance of EAs déODE) was proposed by Rahnamayan et al. in 2006
creases sharply by increasing the dimensionality [@f 3, 5, 27] and then quasi-oppositional DE (QODE)
optimization problems. The main reason for that is 2007 [4]. These algorithms (ODE and QODE) are
increasing the search space dimensionality would lmased on DE and the opposition concept [8, 1]. ODE
crease complexity of the problem exponentially. Omas followed by others to propose opposition-based
the other hand, for many real-world applications, waarticle swarm algorithms [20, 21], tracking dynamic
are faced with problems which contain a huge nurabjects using ODE [9], opposition-based ant colony
ber of variables. Due to such a need, supporting thkgorithms [10, 11], enhancing self-adaptive DE with
scalability is a very valuable characteristic for anyopulation size reduction to tackle large scale prob-
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lems [19}, and introducing an adaptive DE appliegopulation size). Successive populations are gen-
to tuning of a Chess program [22]. erated by adding the weighted difference of two
ODE employs opposition-based population infandomly selected vectors to a third randomly se-
tialization [6] and generation jumping to acceleratected vector. For classical DE (DE/rand/1/bin),
the convergence rate of DE. The main idea behitite mutation, crossover, and selection operators are
the opposition is the simultaneous consideration stfaightforwardly defined as follows:
an estimate and its corresponding opposite estimate
(i.e., guess and opposite guess) in order to achieve dutation - For each vectoX; ¢ in generation
better approximation for the current candidate sola-mutant vecto¥; ¢; is defined by
tion [29].
The reported results for ODE were promising on Vie =Xoc+F(Xeo — Xba), 2
low and medium size problems (D ¥00). But pre- wherei — {1,2,..,N,} anda, b, andc are

viously, ODE was not investigated in scalability. B wally different random inteaer indices selected
experimental verification, current work tries to fin utuaty di ' _g Indl
rom {1,2,...,N,}. Further,i, a, b, and ¢ are

out an answer for this question: which one, DE of . . .
ODE, presents higher efficiency to solve large sc g'ferent S0 thaW.P = 4is requwed.F < [0’.2] IS a
real constant which determines the amplification of
problems? e added differential variation afX, ¢ — Xp.)
i ati i i : i G — Xp,G)-
Organization of this paper is as follows: Sectlo’}f‘arger values forF" result in higher diversity in the

2 provides the brief overview of DE and ODE. | nerated population and lower values cause faster
Section 3, detailed experimental results and also p%?— Pop

formance analysis are given and explained. Finalﬁ;’)nvergence.

the work i ncl in tion 4. . .
e work is concluded in Sectio Crossover - DE utilizes the crossover operation to

generate new solutions by shuffling competing vec-
2 Brief Review of DE and ODE tors and also to increase the diversity of the popu-

lation. For the classical DE (DE/rand/1/bin), the
Differential evolution (DE) and its extended VerSiOBinary crossover (shown by ‘bin’ in the notation) is

by opposition-based concept (ODE) has been briefjjlized. It defines the following trial vector:
reviewed in following subsections.

Uic = (Uia Ui, Upig), (3)
2.1 Differential Evolution (DE)
Differential Evolution (DE) was proposed by Price
and Storn in 1995 [12]. Itis an effective, robust, ang, ] Vjia if rand;(0,1) < Cr v j=Fk,
simple global optimization algorithm [13]. DE is a /% — Xjic otherwise.
population-based directed search method [14]. Like (4)

other evolutionary algorithms, it starts with an ini- ¢, ¢ (0,1) is the predefined crossover rate,
tial population vector, which is randomly generateghd rand;(0,1) is the j** evaluation of a uniform
when no preliminary knowledge about the solutio'indom number generator: € {1,2,....D} is a
space is available. Each vector of the initial populgandom parameter index, chosen once for each
tion can be generated as follows [13]: to make sure that at least one parameter is always
selected from the mutated vectov; ;. Most
popular values foiC, are in the range 0f0.4,1)

Xij =aj+rand;j(0,1) x (aj —b;);5=1,2,..., D, [15].

(1)
whereD is the problem dimension;; andb; are

the lower and the upper boundaries of the varigble S_election “This is an approach which must decide
respectively.rand(0, 1) is the uniformly generatedWhICh vector ({/ or X; ) should be a member of

pdommber 1] D hoeeo i e ont v o s
Let us assume thak; (i = 1,2,...,N,) are b ! )

candidate solution vectors in generatioh (N, : function is chosen (greedy selection).

1t uses opposition concept implicitly by changing the sign This evolutionary cycle (i.e., mutation, crossover,
of F and so searching in the opposite direction. and selection) is repeatéd, (population size) times
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to generate a new population. These successive gel: Calculate opposite population by
erations are produced until meeting the predefined
termination criteria. OP;;=a; +b; — P, (7)

2.2 Opposition-Based DE (ODE) i=1,2,..,Np;7=12,..,D,
Similar to all population-based optimization algo-
rithms, two main steps are distinguishable for the where P; andOP; ; denotej'" variable of the
DE, population initialization and producing new  t» vector of the population and the opposite-
generations by evolutionary operations such as population, respectively.
selection, crossover, and mutation. ODE enhances
these two steps based on looking at the opposit8. Selecting theV, fittest individuals from{P U
points (let say individuals in the population). The  OP} as initial population.
opposite point has a straightforward definition as
follows: . , _
2.2.2 Opposition-Based Generation Jumping
Definition (Opposite Number) -Letz € [a, b] be

By applying a similar approach to the current popula-
a real number. The opposite numbieis defined by y appiying a siri pp ! popu

tion, the evolutionary process can be forced to jump
to a new solution candidate, which may be fitter than

T=a+b-uw. (%) the current one. Based on a jumping rdte after
Similarly, this definition can be extended to high&tenerating new population by selection, crossover,
dimensions as follows [8, 1, 29]: and mutation, the opposite population is calculated

and theN, fittest individuals are selected from the
Definition (Opposite Point in n-Dimensional Union of the current population and the opposite pop-
Space) -Let P = (1,2, ...,x,) be a point in n- _uIatyon. As a difference to opposmor_l-based initial-
dimensional space, whete,, 2, ...,z, € R and ization, it should'be noted here that in ord'er to cal-
x; € lai,bi] Vi € {1,2,...,n}. The opposite point culate the opposite population for generation jump-
p = (£1, %2, ..., &) is completely defined by itsING, _the opposite of _each vanablt_a is calculated dy-
components namically. The maximum and minimum values of
each variable ircurrent population([MIN, MAX "))
are used to calculate opposite points instead of using
variables’ predefined interval boundaries;(fa; ):
Fig.1 presents the flowchart of ODE. White boxes

T; = a; +b; — x;. (6)

present steps of the classical DE and grey ones OP,; = MIN? + MAX? — P, ;, (8)
are expended by opposition concept. Blocks (1) ’ J J ’
and (2) present opposition-based initialization and i=1,2,..,N,;j=1,2,...D.

opposition-based generation jumping, respectively.
Extended blocks by opposition concept will be ex- The dynamic opposition increases the chance to
plained in the following subsections. find fitter opposite points, so it helps in fine tun-
ing. By staying within variables’ interval static
2.2.1 Opposition-Based Population Initializa- boun_daries, we would jump outside of the shrunken
solution space and the knowledge of current re-
duced space (converged population) would not be
By utilizing opposite points, we can obtain fitteutilized. Hence, we calculate opposite points by
starting candidate solutions even when there is nsing variables’ current interval in the popula-
a priori knowledge about the solution(s). Blockon ([MIN?,MAX?]) which is, as the search does
(1) in Fig.1 show implementation of correspondingrogress, increasingly smaller than the correspond-
opposition-based initialization for the ODE. Following initial range[a;, b;]. Block (2) in Fig.1 shows
ing steps show that procedure: the implementation of opposition-based generation
jumping for the ODE. Our extensive experiments
show that jumping rate/r should be a small num-
1. Random initialization of populatioR(Np), berin(0,0.4].

tion
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Random Initialization
of Population P(Np)

(1) Calculating Opposite Population OP(Np)

(2) Fitness Evaluation,
(3) Selecting Np Fittest Individuals from {P(Np), OP(Np)}.

N Termination Yes
Criteria Satisfied?

i No
For i=0 to population-size
(a) Creating Difference-Offspring,
(b) Crossover,
(b) Fitness Evaluation,
(c) Replacement of Parent by Offspring if Offspring is Better.

|

No
If rand(0,1) < Jr

(A) Calculating Opposite Population OP(Np),
(B) Fitness Evaluation,
(C) Selecting Np Fittest Individuals from

{Current Population, OP(Np)}.

Figure 1: Opposition-Based Differential Evolution (ODE). Block (1): Opposition-based initialization, Block
(2): Opposition-based generation jumping (Jjumping rate,rand(0,1): uniformly generated random
number,N,: population size).

3 ODE vs. DE on Large Scale Mini- these functions are described in Appendix A.

mization Problems

, : 3.2 Parameter Settings
In this section, DE and ODE are compared on a

large scale (D=50Gand D=1000) minimization test Parameter setting for all conducted experiments is as
suite in term of solution accuracy. The utilizedollows:

test suite contains seven well-known unimodal and _

multi-modal functions with separability and non- ® Dimension of the problemd) = 500 and D =
separability characteristics in both modality groups. 1000 [23]

e Population size]N, = D [26, 19]

3.1 Benchmark Functions ¢ Differential amplification factorf’ = 0.5 [5, 7,

For comparison of DE and ODE, a recently proposed 28]

benchmark test suite for the CEC-2008 Special Ses- .

sion and Competition on Large Scale Global Opti- ® Crossover probability constant; = 0.9 [5, 7,
mization [23] has been utilized. It includes two uni- 28]

modal (F-F») and five multi-modal (§-F%) func- ¢ \ytation strategy: DE/rand/1/bin (classical ver-
tions, among which four of them are non-separable  gjq of DE) [12, 5, 7, 28]

(Fy, F3, F5, F7) and three are separable (F, Fg).

Functions names and their properties are summae Maximum number of function calls,
rized in Table 1. The mathematical definitions of MAX NEc = 5000 x D [23]

ISSN: 1109-2750 1795 Issue 10, Volume 7, October 2008



WSEAS TRANSACTIONS on COMPUTERS Shahryar Rahnamayan,G. Gary Wang

Table 1: Benchmark functions. All of them are scalable and shifted.

Function  Name Properties Search Space
P ShiftedSphere Function Unimodal, Separable [-100,100]P
Iy Shifted Schwefels Problem 2.21 ~ Unimodal, Non-separable [-100, 100]P
F3 Shifted Rosenbrocks Function Multi-modal, Non-separable, A narrow valley from local optimum to global optinjuri00, 100]2
Fy Shifted Rastrigins Function Multi-modal, Separable, Huge number of local optima [-5,5]"

Fs Shifted Griewanks Function Multi-modal, Non-separable [-600, 600]°
Fs Shifted Ackleys Function Multi-modal, Separable [-32,32]P

Fy FastFractal DoubleDip Function ~ Multi-modal, Non-separable [-1,1]P

e Jumpingrate constant (for ODE)Jr = 0.3 [5, 3.5 Result Analysis

7,28
] As seen from Table 2 and Table 3, on all bench-

mark test functions, ODE clearly outperforms DE.
All above mentioned settings are based on our Although, for functionsF; (the only for500D), Fy,
colleagues’ previous works and so there has no néy, and F;, DE presents a lower standard deviation,
attempts to obtain better values for them. In ord#re fact that even for these functions it is reported
to maintain a reliable and fair comparison, these s@6% confidential intervals confirms that ODE per-
tings are kept unchanged for all conducted expetdrms better. In fact, the smaller boundarie96%
ments for both algorithms and also for both dime®l for ODE demonstrate this conclusion. That is
sions (D=500and1000). valuable to mention, except fdfs, on all functions
(D=500 and1000), a big difference between DE and
ODE'’s results is recognizable.
3.3 Comparison Criteria As mentioned before, our test suite contains
shifted unimodal, multi-modal (with huge number
The conducted comparisons in this paper are basédptima), scalable, separable, and non-separable
on solution accuracy. The termination criteria i&Inctions; so according to the obtained results that
set to reaching the maximum number of functios reasonable to say ODE presents evidences to per-
calls (5000 x D). In order to have a clear visionform better than DE (parent algorithm) on large scale
on algorithm’s efficiency, the best, median, worsproblems.
mean, standar% deviation, afd% confidential in-
terval (95% CI) < of the error value (fx) — f(z*), .
z*: optimum vector) are computed Wb?cth) resp(e:(:?)m 4 Conclusion

runs per function. Before the current work, the performance of ODE on

large scale problems has not been investigated. So,
) it was interesting to have a performance study by an
3.4 Numerical Results accepted high dimensional test suite. The achieved
i results are promising because ODE outperforms DE
Res_ults f(_)r DE and ODE on seven f_unctlons are SURK gl seven test functions, for D=5@nd1000. We
marized in Table 2 for500D and in Table 3 for hgnase that other DE-based approaches, which are
1000D. For each function, the best, median, worsgse 1o tackle large scale problems, may investigate
mean, standard deviation, afd% confidential in- replacing DE by ODE.
terval (95% CI) of the error value or25 runs are Proposing a cooperative coevolutionary ODE
presented. The best result of each error measur?d&ODE) and also studying ODE's jumping rate for

emphasized irboldface. Fitness plots of DE andiyrqe scale optimization represent our directions for
ODE for D=500 and D=1000are given in Figure 2 ¢+ re work.

and Figure 3, respectively. The plots show that how

ODE converges to the solution faster than DE.  Acknowledgement: Authors would like to thank
Dr. K. Tang et al. who shared the Matlab code of
2|t shows thab5% of the data appearances in this interval. benchmark functions.
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Table 2: Numerical results for DE and ODE on seven 500-dimensional minimization problemsn&5
per function). The best result of each error measure is emphasized in boldfg#éeCl stands for95%
confidential interval.

Function Error Value DE ODE
Best 2,636.54 15.66
Median 3,181.45 36.61
I Worse 4,328.80 292.65
Mean 3,266.24 80.17
Std 409.68 79.24
95% CI [3039.4, 3493.1] [299.9,646.1]
Best 79.74 3.60
Median 82.39 4.86
Fy Worse 85.92 11.91
Mean 82.93 5.78
Std 2.09 2.37
95% CI [81.59, 84.25] [4.26,7.28]
Best 76,615, 772.08 39,718.90
Median 119,733, 049.20 137,279.03
F3 Worse 169, 316, 779.50 407,661.64
Mean 123,184, 755.70 154, 306.34
Std 29,956, 737.58 114,000.53
95% CI [1.06€08, 1.39¢08] [0.91€05, 2.17e05]
Best 5,209.99 2,543.51
Median 5, 324.57 4,279.56
Fy Worse 5,388.24 6,003.94
Mean 5,332.59 4,216.34
Std 43.82 1,017.94
95% CI [5312.1,5353.1] [3739.9,4692.7]
Best 24.29 1.25
Median 24.71 1.55
Fy Worse 27.59 2.13
Mean 25.16 1.75
Std 1.10 0.37
95% CI [24.42,25.90] [1.49,1.99]
Best 4.66 2.49
Median 4.97 4.12
Fy Worse 5.15 6.73
Mean 4.94 4.51
Std 0.17 1.44
95% CI [4.87,5.00] [3.91,5.09]
Best —3683.07 —3957.85
Median —3575.13 —3834.07
Fy Worse —3565.73 —3830.36
Mean —3593.75 —3851.82
Std 32.74 38.80
95% CI [—3615.7,—3571.8] [—3877.9,—3825.7]
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Figure 2: Fitness plots for DE and ODE, 500D.
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Table 3: Numerical results for DE and ODE on seu@n0-dimensional minimization problems (2%ins
per function). The best result of each error measure is emphasized in boldfg#éeCl stands for95%
confidential interval.

Function Error Value DE ODE
Best 223,944.73 19,548.90
Median 236,805.13 21,104.67
Fy Worse 258, 806.47 43,417.84
Mean 238,923.73 23,903.98
Std 12,141.16 8,009.82
95% CI [2.30€05,2.47¢05] [1.81e04,2.96e04]
Best 119.57 0.44
Median 121.68 0.77
Fy Worse 123.11 2.88
Mean 121.33 1.31
Std 1.05 0.94
95% CI [120.57,122.09] [0.64,1.99]
Best 35,743,891, 601 213,105,668
Median 40,519, 312, 742 572,841,466
3 Worse 44,559,917,677 1,069, 602,053
Mean 40, 215,461,419 516,296, 792
Std 2,838,193, 442 326,088,526
95% CI [3.81€10,4.22¢10] [2.83e08,7.49e08]
Best 11,589.29 5,704.55
Median 11,791.33 5,904.49
Fy Worse 11, 898.50 7,309.99
Mean 11,782.84 6,168.10
Std 105.06 620.58
95% CI [1.17¢04,1.18¢04] [5.72e03,6.61e03]
Best 1,845.36 138.99
Median 2,040.99 182.19
Iy Worse 2,101.89 185.05
Mean 2,016.90 179.01
Std 79.15 14.13
95% CI [1.96€03,2.07e03] [168.90,189.13]
Best 14.80 10.07
Median 15.14 12.64
Fy Worse 15.51 13.40
Mean 15.13 12.14
Std 0.23 1.14
95% ClI [14.97,15.30] [11.32,12.96]
Best —6,764.16 —-7,326.71
Median —6,705.17 —7,290.84
Fy Worse —6,692.63 —7,103.89
Mean —6,711.71 —7,256.45
Std 21.08 87.08
95% CI [—6726, —6696] [—7318,—-7194]
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Figure 3: Fitness plots for DE and ODE, 1000D.
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Appendix A: List of Bound Constrained Global Optimization High-Dimensional Benchmark Functions [23]

¢ Shifted Sphere Function

Fl(X) = Z ZZ‘Z + f,biasl,
=1

X €[-100,100], Z = (X — 0), X = [z1, 20, ..., ]
O = 01,09, ..., 0,] : The shifted global optimum.

Global optimum:X* = O, F} (X*) = f_bias; = —450
Unimodal, shifted, separable, and scalable.

e Schwefel’'s Problem 2.21

Fy(X) = maz{|Z;|,1 <i<n}+ f_biass,
X € [-100,100], Z = (X — 0), X = [x1, 2, ..., Tp]
O = [o1, 09, ..., 0,] : The shifted global optimum.

Global optimum:X* = O, F5(X*) = f_biasy = —450
Unimodal, shifted, non-separable, and scalable.

e Shifted Rosenbrock’s Function

n—1
F3(X) =Y _{100(Z; — Zis1)* + (Z; — 1)*} + f-biass,
=1
X € [-100,100], Z = (X —O0)+ 1, X = [z1, 2, ..., Tp]
O = |01, 09, ..., 0,] : The shifted global optimum.
Global optimum:X* = O, F5(X™*) = f_biass = 390
Multi-modal, shifted, non-separable, scalable, and having a very narrow valley from local optimum to
global optimum.

¢ Shifted Rastrigins Function

Fy(X) =) {2} — 10cos(2nZ;) + 10} + f_biasy,
=1
X €[-5,5,Z=(X-0),X = [x1,29, ..., ]
O = [o1, 09, ..., 0,] : The shifted global optimum.

Global optimum:X* = O, Fy(X*) = f_biass = —330
Multi-modal, shifted, separable, scalable, and local optimas humber is huge.

e Shifted Griewank’s Function

~ Z: A Z;
B(X) =Y 2 —T] L) 414 fbi
5(X) 2000~ U cos (ﬂ) + 1+ f_biass,

X €[-600,600],Z = (X — 0),X = [z1, 22, ..., Tp]
O = 01,09, ..., 0,] : The shifted global optimum.
Global optimum:X* = O, F5(X*) = f_biass = —180
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Multi-modal, shifted, non-separable, and scalable.

¢ Shifted Ackley’s Function

X €[-32,32,Z = (X - 0),X = [z1,22, ..., Tp]
O = 01,09, ..., 0] : The shifted global optimum.

Global optimum:X* = O, F5(X*) = f_biasg = —140
Multi-modal, shifted, separable, and scalable.

e FastFractal "DoubleDip” Function

n
Fr(X) = Y fractallD(z; + twist(z(j mod n);1)-
i=1
twist(y) = 4(y4 —2y° +9?),
3 2k—1ran2(o)

fractallD(z Z Z Z doubledip <:U + ranl(o), PG _lmnl(o))) 5

doubledip(z, ¢, s) — { (—6144(x — ¢)b 4+ 3088(z — ¢)* —392(z — )2 +1) x s if —0.5.< x < 0.5,
0 otherwise.

X = [z1,22, .0, Tn) ,

o: integer, seeds the random generators

ranl(o): double, pseudorandomly chosen, with seed o, with equal probability from the inf@rial

ran2(o): integer, pseudorandomly chosen, with seed o, with equal probability from tke,dep}.

fractall D(x) is an approximation to a recursive algorithm, it does not take account of wrapping at the
boundaries, or local re-seeding of the random generators.

X* =unknown,F7(X*) = unknown.

Multi-modal, non-separable, and scalable.
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